Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Intervalo de ano de publicação
2.
Mol Biol Evol ; 37(7): 1866-1881, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32259238

RESUMO

Although epigenetic factors may influence the expression of defense genes in plants, their role in antiviral responses and the impact of viral adaptation and evolution in shaping these interactions are still poorly explored. We used two isolates of turnip mosaic potyvirus with varying degrees of adaptation to Arabidopsis thaliana to address these issues. One of the isolates was experimentally evolved in the plant and presented increased load and virulence relative to the ancestral isolate. The magnitude of the transcriptomic responses was larger for the evolved isolate and indicated a role of innate immunity systems triggered by molecular patterns and effectors in the infection process. Several transposable elements located in different chromatin contexts and epigenetic-related genes were also affected. Correspondingly, mutant plants having loss or gain of repressive marks were, respectively, more tolerant and susceptible to turnip mosaic potyvirus, with a more efficient response against the ancestral isolate. In wild-type plants, both isolates induced similar levels of cytosine methylation changes, including in and around transposable elements and stress-related genes. Results collectively suggested that apart from RNA silencing and basal immunity systems, DNA methylation and histone modification pathways may also be required for mounting proper antiviral defenses and that the effectiveness of this type of regulation strongly depends on the degree of viral adaptation to the host.


Assuntos
Arabidopsis/virologia , Epigênese Genética , Aptidão Genética , Interações Hospedeiro-Patógeno/imunologia , Potyvirus/fisiologia , Adaptação Biológica , Arabidopsis/imunologia , Arabidopsis/metabolismo , Evolução Biológica , Metilação de DNA , Transcriptoma
3.
RNA Biol ; 17(2): 292-308, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31766933

RESUMO

miRNAs are small RNAs that regulate mRNAs at both transcriptional and posttranscriptional level. In plants, miRNAs are involved in the regulation of different processes including development and stress-response. Elucidating how stress-responsive miRNAs are regulated is key to understand the global response to stress but also to develop efficient biotechnological tools that could help to cope with stress. Here, we describe a computational approach based on sRNA sequencing, transcript quantification and degradome data to analyse the accumulation, function and structural organization of melon miRNAs reactivated under seven biotic and abiotic stress conditions at two and four days post-treatment. Our pipeline allowed us to identify fourteen stress-responsive miRNAs (including evolutionary conserved such as miR156, miR166, miR172, miR319, miR398, miR399, miR894 and miR408) at both analysed times. According to our analysis miRNAs were categorized in three groups showing a broad-, intermediate- or narrow- response range. miRNAs reactive to a broad range of environmental cues appear as central components in the stress-response network. The strictly coordinated response of miR398 and miR408 (broad response-range) to the seven stress treatments during the period analysed here reinforces this notion. Although both, the amplitude and diversity of the miRNA-related response to stress changes during the exposition time, the architecture of the miRNA-network is conserved. This organization of miRNA response to stress is also conserved in rice and soybean supporting the conservation of miRNA-network organization in other crops. Overall, our work sheds light into how miRNA networks in plants organize and function during stress.


Assuntos
Cucurbitaceae/genética , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , MicroRNAs/genética , Interferência de RNA , Estresse Fisiológico/genética , Produtos Agrícolas/genética , Inativação Gênica , Fenótipo
4.
Plant Cell Physiol ; 60(11): 2382-2393, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31290971

RESUMO

Small interfering RNAs (siRNA) are key regulators of gene expression that play essential roles in diverse biological processes. Trans-acting siRNAs (tasiRNAs) are a class of plant-endogenous siRNAs that lead the cleavage of nonidentical transcripts. TasiRNAs are usually involved in fine-tuning development. However, increasing evidence supports that tasiRNAs may be involved in stress response. Melon is a crop of great economic importance extensively cultivated in semiarid regions frequently exposed to changing environmental conditions that limit its productivity. However, knowledge of the precise role of siRNAs in general, and of tasiRNAs in particular, in regulating the response to adverse environmental conditions is limited. Here, we provide the first comprehensive analysis of computationally inferred melon-tasiRNAs responsive to two biotic (viroid-infection) and abiotic (cold treatment) stress conditions. We identify two TAS3-loci encoding to length (TAS3-L) and short (TAS3-S) transcripts. The TAS candidates predicted from small RNA-sequencing data were characterized according to their chromosome localization and expression pattern in response to stress. The functional activity of cmTAS genes was validated by transcript quantification and degradome assays of the tasiRNA precursors and their predicted targets. Finally, the functionality of a representative cmTAS3-derived tasiRNA (TAS3-S) was confirmed by transient assays showing the cleavage of ARF target transcripts.


Assuntos
Cucurbitaceae/metabolismo , RNA Interferente Pequeno/metabolismo , Cucurbitaceae/genética , Regulação da Expressão Gênica de Plantas , RNA Interferente Pequeno/genética
5.
BMC Plant Biol ; 19(1): 78, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30777009

RESUMO

BACKGROUND: MiRNAs have emerged as key regulators of stress response in plants, suggesting their potential as candidates for knock-in/out to improve stress tolerance in agricultural crops. Although diverse assays have been performed, systematic and detailed studies of miRNA expression and function during exposure to multiple environments in crops are limited. RESULTS: Here, we present such pioneering analysis in melon plants in response to seven biotic and abiotic stress conditions. Deep-sequencing and computational approaches have identified twenty-four known miRNAs whose expression was significantly altered under at least one stress condition, observing that down-regulation was preponderant. Additionally, miRNA function was characterized by high scale degradome assays and quantitative RNA measurements over the intended target mRNAs, providing mechanistic insight. Clustering analysis provided evidence that eight miRNAs showed a broad response range under the stress conditions analyzed, whereas another eight miRNAs displayed a narrow response range. Transcription factors were predominantly targeted by stress-responsive miRNAs in melon. Furthermore, our results show that the miRNAs that are down-regulated upon stress predominantly have as targets genes that are known to participate in the stress response by the plant, whereas the miRNAs that are up-regulated control genes linked to development. CONCLUSION: Altogether, this high-resolution analysis of miRNA-target interactions, combining experimental and computational work, Illustrates the close interplay between miRNAs and the response to diverse environmental conditions, in melon.


Assuntos
Cucurbitaceae/genética , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , MicroRNAs/genética , Produtos Agrícolas , Cucurbitaceae/fisiologia , Regulação para Baixo , Sequenciamento de Nucleotídeos em Larga Escala , Interferência de RNA , RNA Mensageiro/genética , RNA de Plantas/genética , Análise de Sequência de RNA , Estresse Fisiológico , Regulação para Cima
6.
Sci Rep ; 8(1): 15538, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30341377

RESUMO

miRNAs are fundamental endogenous regulators of gene expression in higher organisms. miRNAs modulate multiple biological processes in plants. Consequently, miRNA accumulation is strictly controlled through miRNA precursor accumulation and processing. Members of the miRNA319 family are ancient ribo-regulators that are essential for plant development and stress responses and exhibit an unusual biogenesis that is characterized by multiple processing of their precursors. The significance of the high conservation of these non-canonical biogenesis pathways remains unknown. Here, we analyze data obtained by massive sRNA sequencing and 5' - RACE to explore the accumulation and infer the processing of members of the miR319 family in melon plants exposed to adverse environmental conditions. Sequence data showed that miR319c was down regulated in response to low temperature. However, the level of its precursor was increased by cold, indicating that miR319c accumulation is not related to the stem loop levels. Furthermore, we found that a decrease in miR319c was inversely correlated with the stable accumulation of an alternative miRNA (#miR319c) derived from multiple processing of the miR319c precursor. Interestingly, the alternative accumulation of miR319c and #miR319c was associated with an additional and non-canonical partial cleavage of the miR319c precursor during its loop-to-base-processing. Analysis of the transcriptional activity showed that miR319c negatively regulated the accumulation of HY5 via TCP2 in melon plants exposed to cold, supporting its involvement in the low temperature signaling pathway associated with anthocyanin biosynthesis. Our results provide new insights regarding the versatility of plant miRNA processing and the mechanisms regulating them as well as the hypothetical mechanism for the response to cold-induced stress in melon, which is based on the alternative regulation of miRNA biogenesis.


Assuntos
Temperatura Baixa , Cucurbitaceae/genética , Cucurbitaceae/efeitos da radiação , MicroRNAs/metabolismo , Processamento Pós-Transcricional do RNA , Adaptação Fisiológica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/biossíntese , Análise de Sequência de RNA
7.
Rev Gastroenterol Peru ; 35(3): 247-9, 2015.
Artigo em Espanhol | MEDLINE | ID: mdl-26397281

RESUMO

We present a 34 year old male who enter the Digestive Department of the University Hospital Severo Ochoa in Madrid, Spain with jaundice with a great elevation of transaminases in relationship with an infectious syndrome that was correctly diagnosed and treated with a very good outcome.


Assuntos
Hepatite/etiologia , Sífilis/diagnóstico , Doença Aguda , Adulto , Humanos , Masculino , Sífilis/complicações
8.
Rev. gastroenterol. Perú ; 35(3): 247-249, July 2015. ilus
Artigo em Espanhol | LILACS, LIPECS | ID: lil-790099

RESUMO

Presentamos a continuación un paciente varón de 34 años ingresado en el Servicio Digestivo del Hospital Universitario Severo Ochoa en Madrid, por un cuadro de ictericia con gran elevación de transaminasas en relación con un cuadro infeccioso que se identificó y trató adecuadamente con la consecuente evolución favorable de dicha enfermedad...


We present a 34 year old male who enter the Digestive Department of the University Hospital Severo Ochoa in Madrid, Spain with jaundice with a great elevation of transaminases in relationship with an infectious syndrome that was correctly diagnosed and treated with a very good outcome...


Assuntos
Humanos , Masculino , Adulto , Hepatite B , Hepatite Crônica , Sífilis
9.
Viruses ; 7(2): 456-79, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25626148

RESUMO

Thaumetopoea pityocampa (pine processionary moth) is one of the most important pine pests in the forests of Mediterranean countries, Central Europe, the Middle East and North Africa. Apart from causing significant damage to pinewoods, T. pityocampa occurrence is also an issue for public and animal health, as it is responsible for dermatological reactions in humans and animals by contact with its irritating hairs. High throughput sequencing technologies have allowed the fast and cost-effective generation of genetic information of interest to understand different biological aspects of non-model organisms as well as the identification of potential pathogens. Using these technologies, we have obtained and characterized the transcriptome of T. pityocampa larvae collected in 12 different geographical locations in Turkey. cDNA libraries for Illumina sequencing were prepared from four larval tissues, head, gut, fat body and integument. By pooling the sequences from Illumina platform with those previously published using the Roche 454-FLX and Sanger methods we generated the largest reference transcriptome of T. pityocampa. In addition, this study has also allowed identification of possible viral pathogens with potential application in future biocontrol strategies.


Assuntos
Mariposas/virologia , Transcriptoma , Vírus/genética , Animais , Biologia Computacional , Genes Virais , Sequenciamento de Nucleotídeos em Larga Escala , Larva , Anotação de Sequência Molecular , Filogenia , Pinus/parasitologia , Turquia , Vírus/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...